翻訳と辞書 |
Dirac equation in curved spacetime : ウィキペディア英語版 | Dirac equation in curved spacetime (詳細はmathematical physics, the Dirac equation in curved spacetime generalizes the original Dirac equation to curved space. It can be written by using vierbein fields and the gravitational spin connection. The vierbein defines a local rest frame, allowing the constant Dirac matrices to act at each spacetime point. In this way, Dirac's equation takes the following form in curved spacetime: : Here is the vierbein and is the covariant derivative for fermionic fields, defined as follows : where is the commutator of Dirac matrices: : and are the spin connection components. Note that here Latin indices denote the "Lorentzian" vierbein labels while Greek indices denote manifold coordinate indices. ==See also==
* Dirac equation in the algebra of physical space * Dirac spinor * Maxwell's equations in curved spacetime * Two-body Dirac equations
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dirac equation in curved spacetime」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|